Receptors, Calcitriol
"Receptors, Calcitriol" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
Proteins, usually found in the cytoplasm, that specifically bind calcitriol, migrate to the nucleus, and regulate transcription of specific segments of DNA with the participation of D receptor interacting proteins (called DRIP). Vitamin D is converted in the liver and kidney to calcitriol and ultimately acts through these receptors.
Descriptor ID |
D018167
|
MeSH Number(s) |
D12.776.260.698.535 D12.776.826.535 D12.776.930.669.535
|
Concept/Terms |
Receptors, Calcitriol- Receptors, Calcitriol
- Vitamin D 3 Receptors
- Vitamin D3 Receptor
- D3 Receptor, Vitamin
- Receptor, Vitamin D3
- Vitamin D3 Receptors
- Receptors, Vitamin D3
- D3 Receptors, Vitamin
- 1,25-Dihydroxyvitamin D3 Receptor
- 1,25 Dihydroxyvitamin D3 Receptor
- D3 Receptor, 1,25-Dihydroxyvitamin
- Receptor, 1,25-Dihydroxyvitamin D3
- 1,25-Dihydroxyvitamin D3 Receptors
- 1,25 Dihydroxyvitamin D3 Receptors
- D3 Receptors, 1,25-Dihydroxyvitamin
- Receptors, 1,25-Dihydroxyvitamin D3
- Calcitriol Receptor
- Receptor, Calcitriol
- Calcitriol Receptors
- Receptors, Cholecalciferol
- Cholecalciferol Receptors
- Vitamin D Receptor
- D Receptor, Vitamin
- Receptor, Vitamin D
- Receptors, Vitamin D
- D Receptors, Vitamin
- Vitamin D Receptors
- 1,25-Dihydroxyvitamin D 3 Receptor
- 1,25 Dihydroxyvitamin D 3 Receptor
- Receptors, 1,25-Dihydroxyvitamin D 3
- Receptors, Vitamin D 3
- Vitamin D 3 Receptor
- 1,25-Dihydroxycholecalciferol Receptor
- 1,25 Dihydroxycholecalciferol Receptor
- Receptor, 1,25-Dihydroxycholecalciferol
- 1,25-Dihydroxycholecalciferol Receptors
- 1,25 Dihydroxycholecalciferol Receptors
- Receptors, 1,25-Dihydroxycholecalciferol
|
Below are MeSH descriptors whose meaning is more general than "Receptors, Calcitriol".
Below are MeSH descriptors whose meaning is more specific than "Receptors, Calcitriol".
This graph shows the total number of publications written about "Receptors, Calcitriol" by people in UAMS Profiles by year, and whether "Receptors, Calcitriol" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
2024 | 0 | 1 | 1 | 2021 | 0 | 1 | 1 | 2017 | 2 | 0 | 2 | 2016 | 0 | 1 | 1 | 2015 | 1 | 1 | 2 | 2014 | 2 | 0 | 2 | 2013 | 2 | 1 | 3 | 2011 | 1 | 0 | 1 | 2005 | 1 | 0 | 1 | 2004 | 0 | 1 | 1 | 1996 | 0 | 1 | 1 | 1994 | 0 | 1 | 1 | 1993 | 0 | 1 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Receptors, Calcitriol" by people in Profiles over the past ten years.
-
Sato AY, Cregor M, McAndrews K, Schurman CA, Schaible E, Shutter J, Vyas P, Adhikari B, Willis MS, Boerma M, Alliston T, Bellido T. Pharmacologic or genetic interference with atrogene signaling protects against glucocorticoid-induced musculoskeletal and cardiac disease. JCI Insight. 2024 Nov 08; 9(21).
-
Chauss D, Freiwald T, McGregor R, Yan B, Wang L, Nova-Lamperti E, Kumar D, Zhang Z, Teague H, West EE, Vannella KM, Ramos-Benitez MJ, Bibby J, Kelly A, Malik A, Freeman AF, Schwartz DM, Portilla D, Chertow DS, John S, Lavender P, Kemper C, Lombardi G, Mehta NN, Cooper N, Lionakis MS, Laurence A, Kazemian M, Afzali B. Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nat Immunol. 2022 01; 23(1):62-74.
-
Pike JW, Meyer MB, Lee SM, Onal M, Benkusky NA. The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. J Clin Invest. 2017 Apr 03; 127(4):1146-1154.
-
Shamsuzzaman S, Onal M, St John HC, Jeffery JJ, Pike JW. Absence of the Vitamin D Receptor Inhibits Atherosclerotic Plaque Calcification in Female Hypercholesterolemic Mice. J Cell Biochem. 2017 05; 118(5):1050-1064.
-
Onal M, St John HC, Danielson AL, Pike JW. Deletion of the Distal Tnfsf11 RL-D2 Enhancer That Contributes to PTH-Mediated RANKL Expression in Osteoblast Lineage Cells Results in a High Bone Mass Phenotype in Mice. J Bone Miner Res. 2016 Feb; 31(2):416-29.
-
Pike JW, Meyer MB, Benkusky NA, Lee SM, St John H, Carlson A, Onal M, Shamsuzzaman S. Genomic Determinants of Vitamin D-Regulated Gene Expression. Vitam Horm. 2016; 100:21-44.
-
Meyer MB, Benkusky NA, Onal M, Pike JW. Selective regulation of Mmp13 by 1,25(OH)2D3, PTH, and Osterix through distal enhancers. J Steroid Biochem Mol Biol. 2016 11; 164:258-264.
|
People People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|