Saccharomyces cerevisiae Proteins
"Saccharomyces cerevisiae Proteins" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Descriptor ID |
D029701
|
MeSH Number(s) |
D12.776.354.750
|
Concept/Terms |
|
Below are MeSH descriptors whose meaning is more general than "Saccharomyces cerevisiae Proteins".
Below are MeSH descriptors whose meaning is more specific than "Saccharomyces cerevisiae Proteins".
This graph shows the total number of publications written about "Saccharomyces cerevisiae Proteins" by people in UAMS Profiles by year, and whether "Saccharomyces cerevisiae Proteins" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
2024 | 2 | 1 | 3 | 2023 | 1 | 0 | 1 | 2022 | 1 | 0 | 1 | 2019 | 1 | 0 | 1 | 2018 | 1 | 0 | 1 | 2017 | 2 | 1 | 3 | 2016 | 1 | 1 | 2 | 2015 | 4 | 1 | 5 | 2014 | 1 | 0 | 1 | 2013 | 2 | 1 | 3 | 2012 | 1 | 2 | 3 | 2011 | 1 | 0 | 1 | 2009 | 3 | 1 | 4 | 2008 | 2 | 3 | 5 | 2007 | 1 | 0 | 1 | 2006 | 3 | 1 | 4 | 2005 | 5 | 2 | 7 | 2004 | 1 | 0 | 1 | 2003 | 2 | 0 | 2 | 2002 | 2 | 2 | 4 | 2001 | 1 | 1 | 2 | 2000 | 1 | 0 | 1 | 1999 | 3 | 0 | 3 | 1998 | 2 | 0 | 2 | 1997 | 2 | 0 | 2 | 1996 | 2 | 0 | 2 | 1994 | 2 | 0 | 2 | 1993 | 1 | 0 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Saccharomyces cerevisiae Proteins" by people in Profiles over the past ten years.
-
Hong Z, Byrd AK, Gao J, Das P, Tan VQ, Malone EG, Osei B, Marecki JC, Protacio RU, Wahls WP, Raney KD, Song H. Eukaryotic Pif1 helicase unwinds G-quadruplex and dsDNA using a conserved wedge. Nat Commun. 2024 Jul 19; 15(1):6104.
-
Scholes AN, Stuecker TN, Hood SE, Locke CJ, Stacy CL, Zhang Q, Lewis JA. Natural variation in yeast reveals multiple paths for acquiring higher stress resistance. BMC Biol. 2024 Jul 04; 22(1):149.
-
Gao J, Proffitt DR, Marecki JC, Protacio RU, Wahls WP, Byrd AK, Raney KD. Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth. Nucleic Acids Res. 2024 Jun 24; 52(11):6543-6557.
-
Chib S, Griffin WC, Gao J, Proffitt DR, Byrd AK, Raney KD. Pif1 Helicase Mediates Remodeling of Protein-Nucleic Acid Complexes by Promoting Dissociation of Sub1 from G-Quadruplex DNA and Cdc13 from G-Rich Single-Stranded DNA. Biochemistry. 2023 12 05; 62(23):3360-3372.
-
Pablo-Kaiser A, Tucker MG, Turner GA, Dilday EG, Olmstead AG, Tackett CL, Duina AA. Dominant effects of the histone mutant H3-L61R on Spt16-gene interactions in budding yeast. Epigenetics. 2022 12; 17(13):2347-2355.
-
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci. 2022 Mar 29; 23(7).
-
Campbell JB, Edwards MJ, Ozersky SA, Duina AA. Evidence that dissociation of Spt16 from transcribed genes is partially dependent on RNA Polymerase II termination. Transcription. 2019 Aug - Oct; 10(4-5):195-206.
-
West KL, Byrum SD, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ. Proteomic characterization of the arsenic response locus in S. cerevisiae. Epigenetics. 2019 02; 14(2):130-145.
-
Makharashvili N, Arora S, Yin Y, Fu Q, Wen X, Lee JH, Kao CH, Leung JW, Miller KM, Paull TT. Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. Elife. 2018 12 07; 7.
-
Wang W, Daley JM, Kwon Y, Xue X, Krasner DS, Miller AS, Nguyen KA, Williamson EA, Shim EY, Lee SE, Hromas R, Sung P. A DNA nick at Ku-blocked double-strand break ends serves as an entry site for exonuclease 1 (Exo1) or Sgs1-Dna2 in long-range DNA end resection. J Biol Chem. 2018 11 02; 293(44):17061-17069.
-
Nyamugenda E, Cox AB, Pierce JB, Banning RC, Huynh ML, May C, Marshall S, Turkal CE, Duina AA. Charged residues on the side of the nucleosome contribute to normal Spt16-gene interactions in budding yeast. Epigenetics. 2018; 13(1):1-7.
-
Wang P, Byrum S, Fowler FC, Pal S, Tackett AJ, Tyler JK. Proteomic identification of histone post-translational modifications and proteins enriched at a DNA double-strand break. Nucleic Acids Res. 2017 Nov 02; 45(19):10923-10940.
-
Byrd AK, Raney KD. Structure and function of Pif1 helicase. Biochem Soc Trans. 2017 Oct 15; 45(5):1159-1171.
-
Lopez CR, Singh S, Hambarde S, Griffin WC, Gao J, Chib S, Yu Y, Ira G, Raney KD, Kim N. Yeast Sub1 and human PC4 are G-quadruplex binding proteins that suppress genome instability at co-transcriptionally formed G4 DNA. Nucleic Acids Res. 2017 Jun 02; 45(10):5850-5862.
-
Duina AA, Turkal CE. Targeted in Situ Mutagenesis of Histone Genes in Budding Yeast. J Vis Exp. 2017 01 26; (119).
-
Blair LP, Liu Z, Labitigan RL, Wu L, Zheng D, Xia Z, Pearson EL, Nazeer FI, Cao J, Lang SM, Rines RJ, Mackintosh SG, Moore CL, Li W, Tian B, Tackett AJ, Yan Q. KDM5 lysine demethylases are involved in maintenance of 3'UTR length. Sci Adv. 2016 Nov; 2(11):e1501662.
-
Ramachandran A, Nandakumar D, Deshpande AP, Lucas TP, R-Bhojappa R, Tang GQ, Raney K, Yin YW, Patel SS. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA. J Biol Chem. 2016 08 05; 291(32):16828-39.
-
Jacobi JL, Yang B, Li X, Menze AK, Laurentz SM, Janle EM, Ferruzzi MG, McCabe GP, Chapple C, Kirchmaier AL. Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin. PLoS One. 2016; 11(2):e0149207.
-
O'Connor HF, Lyon N, Leung JW, Agarwal P, Swaim CD, Miller KM, Huibregtse JM. Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners. EMBO Rep. 2015 Dec; 16(12):1699-712.
-
Garc?a-Rodr?guez LJ, De Piccoli G, Marchesi V, Jones RC, Edmondson RD, Labib K. A conserved Pol? binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1. Nucleic Acids Res. 2015 Oct 15; 43(18):8830-8.
|
People  People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|