Large-Conductance Calcium-Activated Potassium Channels
"Large-Conductance Calcium-Activated Potassium Channels" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
A major class of calcium activated potassium channels whose members are voltage-dependent. MaxiK channels are activated by either membrane depolarization or an increase in intracellular Ca(2+). They are key regulators of calcium and electrical signaling in a variety of tissues.
Descriptor ID |
D051036
|
MeSH Number(s) |
D12.776.157.530.400.600.150.500 D12.776.543.550.425.750.150.500 D12.776.543.585.400.750.150.500
|
Concept/Terms |
|
Below are MeSH descriptors whose meaning is more general than "Large-Conductance Calcium-Activated Potassium Channels".
Below are MeSH descriptors whose meaning is more specific than "Large-Conductance Calcium-Activated Potassium Channels".
This graph shows the total number of publications written about "Large-Conductance Calcium-Activated Potassium Channels" by people in UAMS Profiles by year, and whether "Large-Conductance Calcium-Activated Potassium Channels" was a major or minor topic of these publications.
To see the data from this visualization as text,
click here.
Year | Major Topic | Minor Topic | Total |
---|
2020 | 1 | 0 | 1 |
2015 | 1 | 0 | 1 |
2013 | 0 | 1 | 1 |
2012 | 0 | 1 | 1 |
2011 | 1 | 0 | 1 |
2009 | 2 | 0 | 2 |
2008 | 1 | 0 | 1 |
2002 | 0 | 1 | 1 |
To return to the timeline,
click here.
Below are the most recent publications written about "Large-Conductance Calcium-Activated Potassium Channels" by people in Profiles over the past ten years.
-
Shrum S, Tobacyk J, Lo S, Parajuli N, MacMillan-Crow LA. The BK activator NS11021 partially protects rat kidneys from cold storage and transplantation-induced mitochondrial and renal injury. Arch Biochem Biophys. 2020 07 30; 688:108410.
-
Stimers JR, Song L, Rusch NJ, Rhee SW. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes. PLoS One. 2015; 10(6):e0130588.