Connection
Mark Smeltzer to Peptide Hydrolases
This is a "connection" page, showing publications Mark Smeltzer has written about Peptide Hydrolases.
|
|
Connection Strength |
|
|
|
|
|
4.701 |
|
|
|
-
Campbell MJ, Beenken KE, Ramirez AM, Smeltzer MS. The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis. Virulence. 2023 12; 14(1):2175496.
Score: 0.882
-
Rom JS, Beenken KE, Ramirez AM, Walker CM, Echols EJ, Smeltzer MS. Limiting protease production plays a key role in the pathogenesis of the divergent clinical isolates of Staphylococcus aureus LAC and UAMS-1. Virulence. 2021 12; 12(1):584-600.
Score: 0.768
-
Ramirez AM, Beenken KE, Byrum SD, Tackett AJ, Shaw LN, Gimza BD, Smeltzer MS. SarA plays a predominant role in controlling the production of extracellular proteases in the diverse clinical isolates of Staphylococcus aureus LAC and UAMS-1. Virulence. 2020 12; 11(1):1738-1762.
Score: 0.716
-
Byrum SD, Loughran AJ, Beenken KE, Orr LM, Storey AJ, Mackintosh SG, Edmondson RD, Tackett AJ, Smeltzer MS. Label-Free Proteomic Approach to Characterize Protease-Dependent and -Independent Effects of sarA Inactivation on the Staphylococcus aureus Exoproteome. J Proteome Res. 2018 10 05; 17(10):3384-3395.
Score: 0.616
-
Beenken KE, Mrak LN, Zielinska AK, Atwood DN, Loughran AJ, Griffin LM, Matthews KA, Anthony AM, Spencer HJ, Skinner RA, Post GR, Lee CY, Smeltzer MS. Impact of the functional status of saeRS on in vivo phenotypes of Staphylococcus aureus sarA mutants. Mol Microbiol. 2014 Jun; 92(6):1299-312.
Score: 0.455
-
Zielinska AK, Beenken KE, Mrak LN, Spencer HJ, Post GR, Skinner RA, Tackett AJ, Horswill AR, Smeltzer MS. sarA-mediated repression of protease production plays a key role in the pathogenesis of Staphylococcus aureus USA300 isolates. Mol Microbiol. 2012 Dec; 86(5):1183-96.
Score: 0.408
-
Mrak LN, Zielinska AK, Beenken KE, Mrak IN, Atwood DN, Griffin LM, Lee CY, Smeltzer MS. saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus. PLoS One. 2012; 7(6):e38453.
Score: 0.398
-
Campbell MJ, Beenken KE, Ramirez AM, Smeltzer MS. Increased production of aureolysin and staphopain A is a primary determinant of the reduced virulence of Staphylococcus aureus sarA mutants in osteomyelitis. mBio. 2024 Apr 10; 15(4):e0338323.
Score: 0.224
-
Atwood DN, Loughran AJ, Courtney AP, Anthony AC, Meeker DG, Spencer HJ, Gupta RK, Lee CY, Beenken KE, Smeltzer MS. Comparative impact of diverse regulatory loci on Staphylococcus aureus biofilm formation. Microbiologyopen. 2015 Jun; 4(3):436-51.
Score: 0.121
-
Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, Horswill AR, Bayles KW, Smeltzer MS. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One. 2010 May 24; 5(5):e10790.
Score: 0.086
-
Snowden JN, Beaver M, Beenken K, Smeltzer M, Horswill AR, Kielian T. Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation. PLoS One. 2013; 8(12):e84089.
Score: 0.028
|
Connection Strength
The connection strength for concepts is the sum of the scores for each matching publication.
Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
|