Header Logo
Keywords
Last Name
Institution
Announcement

You can now add alternative names! Click here to add other names that you've published under.

Connection

Search Results to Giulia Baldini

This is a "connection" page, showing the details of why an item matched the keywords from your search.

                     
                     

One or more keywords matched the following properties of Baldini, Giulia

PropertyValue
overview • Obesity is a major risk factor in the development of the metabolic syndrome, which is characterized by hypertension, glucose intolerance, insulin resistance, dyslipidemia, and increased propensity to develop diabetes type 2. • A likely cofactor promoting the alarming increase in obesity in the last 10 years is the availability of food with high caloric and fat content. Exposure to a hypercaloric, high-fat diet induces lipid stress in regions of the hypothalamus controlling appetite. • Melanocortin-4 Receptor (MC4R), a G-protein coupled receptor (GPCR) expressed by neurons of the hypothalamus controls appetite and is thereby considered a relevant target for anti-obesity therapies. However, even very potent MC4R agonists do not appear to treat obesity in mice and humans. The underlying mechanisms by which such agonists are ineffective are yet unclear. • Our research aims to discover how lipid stress, such as that induced by high fat diet, affects MC4R abundance, signaling, and intracellular traffic; whether chemical chaperones can rescue function of MC4R in lipid stressed neurons; and whether different synthetic MC4R agonists have specific effects to promote MC4R signaling. • Our research analyzes MC4R function in cultured hypothalamic neurons, neuronal cells, and the murine hypothalamus by using state-of-the-art techniques, such as Quantitative Fluorescence Microscopy, including Förster Resonance Energy Transfer and Fluorescence Recovery After Photobleaching, Super-Resolution Microscopy, Electron Microscopy and Mass Spectrometry.

Search Criteria
  • Microscopy