Header Logo
Keywords
Last Name
Institution
Announcement

You can now add alternative names! Click here to add other names that you've published under.

Meprin A Metalloproteinase in Acute Kidney Injury


Collapse Overview 
Collapse abstract
Meprins, cell-surface and secreted oligomeric metalloendopeptidases of the 'astacin' family, are highly expressed at the brush-border membranes of the kidney proximal tubules. The specific role of meprins during acute kidney injury (AKI) is not fully understood. Our studies identified that meprin A is the major matrix-degrading protease in the rat kidney cortex capable of degrading the extracellular matrix (ECM) proteins including collagen IV, fibronectin, laminin, and nidogen in vitro. Our recently published and preliminary studies demonstrated that meprins are also capable of producing biologically active proinflammatory cytokine interleukin 1-beta from its inactive proform and proteolytically processing chemotactic cytokine MCP-1, suggesting that meprins are also important in inflammation. Leukocytes isolated from the peripheral blood or the kidney tissue were found to express meprin beta. Furthermore, our studies demonstrate that, following ischemia-reperfusion- and cisplatin-induced AKI, meprin A is redistributed toward the basolateral side of the proximal tubule. These studies suggest that altered localization of meprin A in places other than the apical brush-border membranes may be deleterious in vivo in acute tubular injury. Preliminary studies suggest that meprin A shedding may involve a member of the ADAM (a disintegrin and metalloproteinase) family. Using in vivo models of cisplatin- and ischemia- reperfusion-induced AKI, we demonstrated that actinonin, a potent inhibitor of meprin A inhibits meprin A in vivo and ameliorates acute kidney injury and meprin A-deficient mice are resistant to cisplatin nephrotoxicity. Interestingly, we observed that nidogen and meprin-beta fragments, undetectable in the urine of normal mice, increased significantly during cisplatin nephrotoxicity and actinonin markedly prevented urinary excretion of nidogen fragments. Thus, a unique opportunity exists to further explore the role and mechanism of action of meprin A in AKI. We hypothesize that meprin A, with its enormous destructive potential, is detrimental to renal proximal tubules due to altered localization during AKI and that understanding its mechanism of action is important in protecting or reducing AKI. We will test the hypothesis through the following specific aims: The Specific Aims are: 1. Examine the temporal relationship between meprin A redistribution, renal injury, leukocyte infiltration, and meprin A shedding during AKI using experimental models of IR and cisplatin nephrotoxicity. 2. Identification of meprin A-mediated in vivo degradation products of the ECM components during IR and cisplatin nephrotoxicity. 3. Determine the mechanisms of meprin A-mediated inflammatory effects and functional significance of meprin A during AKI using a meprin inhibitor and meprin A-deficient mice. Understanding the underlying role of meprin A in AKI will provide insights for specific therapeutic interventions to prevent acute kidney injury.

Collapse sponsor award id
R01DK081690


Collapse Biography 

Collapse Time 
Collapse start date
2010-03-01

Collapse end date
2015-08-31