Connection
Co-Authors
This is a "connection" page, showing publications co-authored by Michael Rutherford and Fred Prior.
|
|
Connection Strength |
|
|
|
|
|
1.161 |
|
|
|
-
Rutherford M, Mun SK, Levine B, Bennett W, Smith K, Farmer P, Jarosz Q, Wagner U, Freyman J, Blake G, Tarbox L, Farahani K, Prior F. A DICOM dataset for evaluation of medical image de-identification. Sci Data. 2021 07 16; 8(1):183.
Score: 0.794
-
Desai S, Baghal A, Wongsurawat T, Jenjaroenpun P, Powell T, Al-Shukri S, Gates K, Farmer P, Rutherford M, Blake G, Nolan T, Sexton K, Bennett W, Smith K, Syed S, Prior F. Chest imaging representing a COVID-19 positive rural U.S. population. Sci Data. 2020 11 24; 7(1):414.
Score: 0.190
-
Clunie D, Prior F, Rutherford M, Moore S, Parker W, Kondylakis H, Ludwigs C, Klenk J, Lou B, O'Sullivan LT, Marcus D, Dobes J, Gutman A, Farahani K. Summary of the National Cancer Institute 2023 Virtual Workshop on Medical Image De-identification-Part 1: Report of the MIDI Task Group - Best Practices and Recommendations, Tools for Conventional Approaches to De-identification, International Approaches to De-identification, and Industry Panel on Image De-identification. J Imaging Inform Med. 2024 Jul 12.
Score: 0.061
-
Kondylakis H, Catalan R, Alabart SM, Barelle C, Bizopoulos P, Bobowicz M, Bona J, Fotiadis DI, Garcia T, Gomez I, Jimenez-Pastor A, Karatzanis G, Lekadir K, Kogut-Czarkowska M, Lalas A, Marias K, Marti-Bonmati L, Munuera J, Nikiforaki K, Pelissier M, Prior F, Rutherford M, Saint-Aubert L, Sakellariou Z, Seymour K, Trouillard T, Votis K, Tsiknakis M. Documenting the de-identification process of clinical and imaging data for AI for health imaging projects. Insights Imaging. 2024 May 31; 15(1):130.
Score: 0.061
-
Osuala R, Skorupko G, Lazrak N, Garrucho L, Garc?a E, Joshi S, Jouide S, Rutherford M, Prior F, Kushibar K, D?az O, Lekadir K. medigan: a Python library of pretrained generative models for medical image synthesis. J Med Imaging (Bellingham). 2023 Nov; 10(6):061403.
Score: 0.055
|
Connection Strength
The connection strength for concepts is the sum of the scores for each matching publication.
Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
|